
A Rapid, High Throughput, Viral Infectivity Assay using Automated
Brightfield Microscopy with Machine Learning

Rupert Dodkins1, John R. Delaney1, Tess Overton2, Frank Scholle2, Alba Frias3, Elisa Crisci3,
Nafisa Huq4, Ingo Jordan5, Jason T. Kimata6, and Ilya G. Goldberg1

1ViQi Inc., Santa Barbara, CA, 93117, United States
2Department of Biological Sciences North Carolina State University Raleigh, NC 27695, USA
3College of Veterinary Medicine, Department of Population Health and Pathobiology, North
Carolina State University, Raleigh, NC 27695, United States
4Melbec Microbiology Ltd, Rossendale, Lancashire, BB4 4QJ, United Kingdom
5ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany
6Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX,
United States

Abstract

Infectivity assays are essential for the development of viral vaccines, antiviral therapies
and the manufacture of biologicals. Traditionally, these assays take 2–7 days and require
several manual processing steps after infection. We describe an automated assay
(AVIATM), using machine learning (ML) and high-throughput brightfield microscopy on
96-well plates that can quantify infection phenotypes within hours, before they are
manually visible, and without sample preparation. ML models were trained on HIV,
influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses,
which together span the four major categories of virus (DNA, RNA, enveloped, and
non-enveloped).  A sigmoidal function, fit to virus dilution curves, yielded an R2 higher
than 0.98 and a linear dynamic range comparable to or better than conventional plaque or
TCID50 assays. Because this technology is based on sensitizing AIs to specific
phenotypes of infection, it may have potential as a rapid, broad-spectrum tool for virus
identification.

Vaccination is the most efficacious and economic intervention for prevention of infectious
diseases, spillover events from animals to humans, and (in the case of veterinary vaccines) food
security 1–3. Importance of development of novel vaccines for pandemic preparedness, or
adequate stockpiles of proven vaccines, has been drastically demonstrated in the coronavirus
disease 2019 (COVID-19) outbreak that resulted in hundreds of millions of cases, and almost 6
million deaths worldwide to date4.

Research on vaccines and antiviral therapies depend on infectivity assays for quantification of
vector design decisions, purification processes and efficacy. However, infectivity assays are also
central to the development and release of biologicals, medicines made from living cells taken
from animals and thus at risk of contamination with adventitious agents 5,6. As much as a third of
all infectivity assays currently being done are for monitoring viral clearance in the manufacturing
process for biological therapies 7,8. For such assays a set of standard viral stocks is used to
spike a manufacturing process and the infectious titer is measured before and after various
process steps. The FDA outlines a reduction in infectivity of 1015 for all manufacturing steps
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combined, for 11 different viruses, and these assays are typically done with conventional plaque
assays9 .

All combined, any improvement in the pace of measuring viral infectivity, its cost, or the reliability
of the result can thus have profound consequences for the development of conventional,
lipid-encapsulated or viral-vectored vaccines, antiviral drugs and biocides, biological therapies
that require clearance assays, as well as therapies that use viral vectors such as gene therapy,
cancer immunotherapy, and oncolytic therapies.

Infectivity assays operate by observing and quantifying the effects of viral replication on a
culture of susceptible or permissive cells. For example, in plaque assays, cells are infected on
6-well or 24-well plates and overlaid with an immobilizing medium that localizes viral spread to
neighboring cells only 10,11. This causes infected cells to form localized clusters of cytopathic
effects (CPEs; dead or fused cells) that can be identified and counted to measure viral
infectivity. The problem is that it takes 2-14 days to form plaques large enough to be identified
by eye 12,13,14. The long incubation time slows down research, the overlays interfere with
automation, which limits throughput, and the large format of the assay contributes to costs,
especially in high containment facilities15.

The Tissue Culture Infectious Dose (TCID50) assay is an endpoint dilution assay used
to find a specific dilution of virus stock where 50% of the infected wells show signs of being
infected after a set incubation period16. As with plaque assays, an extended incubation time is
required for multiple rounds of infection to occur so that a well of cells initially infected with a
single infectious viral particle will become visibly infected. Unlike plaque assays, the count of
infection events is much lower, which contributes to reduced precision. The TCID50 assay is
typically done on 96-well or 384-well plates, but the number of samples per plate is limited by
the requirement for multiple wells (usually 6-8 per replicate) for each dilution17. For obvious
infection phenotypes like cell lysis, a well can be identified as infected vs. uninfected reliably
without additional reagents, while more subtle phenotypes or more reliable automation may
require more expensive reagents to detect infection reliably. This assay can be largely
automated and it provides an estimate of the titer range but it is not as precise as a standard
plaque assay18. The limited sensitivity to small differences in infectivity can cause promising lead
compounds or vaccines to be missed. Typically TCID50 assays determine titer to within a factor
of 5 or 10, while plaque assays can be accurate to within a factor of 2 19,20.

The fluorescent focus assay or focus forming assay (FFA) is a variation of the plaque assay, but
instead of relying on multiple rounds of infection and cell lysis in order to detect plaque
formation, FFA employs immunostaining with detection of particular viral antigen expressed in
the infected cells and is developed either using fluorescently labeled antibodies or
immunocytochemistry techniques21. Fluorescent protein genes can also be expressed by
introducing them into a recombinant viral genome. FFA can be used to detect individual infected
cells before a plaque is formed, allowing this technique to yield results in less time than plaque
or TCID50 assays. The labeled infected cells can also be counted by flow cytometry 22. However,
FFA is dependent on a consistent supply of antibody reagents or transgenic viral strains, and
the experimental analysis requires multiple manipulations that can make the final quantification
subjective. The requirement for reagents and processing steps necessary for antibody-based
detection can be avoided by developing viral strains carrying genes for fluorescent proteins,
luciferase or beta-galactosidase. Including marker genes in therapeutic viral vectors may be
problematic, and not all viruses are available in recombinant formats13. Laser Force Cytology
uses a flow cell and backscatter imaging to discern infected from uninfected cells 23,24. This
technique possesses many of the benefits of FFA, such as rapid turnaround time, without the
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requirement of cell labeling. However, this method requires specialist hardware, has a low limit
of detection, and has challenges in scalability across many samples due to its reliance on a flow
cell. Using deep learning and convolutional neural networks has been previously used on
brightfield images of infected cells to detect CPEs27,28. These studies focused on a single virus
each rather than proposing a generalized infectivity platform, and unlike this study, the CPEs are
manually visible at the timepoints that were used.

A key difference between AI-based image processing and conventional image analysis that is
used in FFA processing or automated plaque counting, is how variability in the assay is
accounted for. This includes variation in cell health and density, variation in virally-induced
infection phenotypes, and variation from well to well, plate to plate, and day to day. Conventional
image processing relies on choosing parameters that are sufficiently tolerant of the variability
without adversely affecting the assay's sensitivity or precision. The parameter choice is typically
in the hands of the experimentalist, and this can make the assay results dependent on the
parameters chosen or the person choosing them. This can be even more subjective when the
assay is directly read out by the experimentalist without software. When using AI-based
techniques, the variability present in the assay is trained into the AI, since there are no image
processing parameters for the experimentalist to choose. While different experimentalists may
introduce bias by consistently growing slightly different looking cells and producing slightly
different viral infectivity phenotypes, this difference can be quantified by having the two
researchers titer the same viral sample, and importantly, the AI can be trained to ignore these
variations by being trained with samples from multiple researchers.

We present a novel infectivity assay that solves the shortcomings of the traditional approaches
listed above. The automated viral infectivity assay (AVIA) uses computer vision methods based
on machine learning (ML) to analyze brightfield images collected from 96-well plates infected
with limited dilutions of virus-containing samples. AIs can be trained to detect subtle cell
morphological differences associated with virus infection prior to any manually visible cytopathic
effects like swelling, fusion, or cell death 25,26,23. This is made possible by these algorithms
having access to the full 12-16 bits of dynamic range in modern sensors (as opposed to the
approximately 6-7 bits of the human retina). These models detect trends across a vast range of
images simultaneously and are specialized to ignore the large amounts of irrelevant image
information in complex images such as brightfield. The use of brightfield microscopy obviates
cell fixation and staining, which allows the technique to be more easily automated as well as
making it faster, safer, more reproducible, and more cost effective. Due to the quantitative assay
readout for each well, fewer dilutions are required per sample than TCID50, freeing up valuable
plate real estate, which increases sample throughput and further reduces cost per sample.
Furthermore, the assay does not rely on plaque formation and is therefore not limited to plaque
forming viruses (see Supplementary Fig. 2 with HIV for example). Lastly, the increased
automation, reduction of sample preparation steps, and fully automated analysis ensures that
results are consistent from day to day and from researcher to researcher. Table 1 summarizes
the key metrics of the described infectivity assays, where the values for the traditional
techniques are compiled from publications that made these comparisons 29,13,30,19,31, 32,33.

This paper presents the development and validation of the AVIA assay platform. In the
Automated Viral Infectivity Assay section, we describe the assay and the metrics of success
used in the investigations. The Viral versatility and Example inactivation assay sections
showcase the training performance of AVIA on a selection of viruses investigated so far as well
as an example inactivation assay. In Supplementary Materials, we explore optimization of
training parameters, and generalizability of models across experimental conditions.
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Automated viral infectivity assay

The challenge in training machine learning models on images with changes that cannot be
observed by eye is setting up experimental conditions so that the images used for training have
a well-defined ground truth. To accomplish this, we start with the assumption that a successful
infectious viral particle will induce a detectable morphological change in the host cell. This way,
a binary classifier model could be trained using cells infected with a high multiplicity of infection
(MOI) to serve as the positive class, and mock-infected cells with no exposure to viral particles
to serve as the negative class. The MOI of the positive class must be sufficiently high that all
cells can be assumed to be infected synchronously as any uninfected cells will contaminate the
positive class with false positives and place a limit on the accuracy of the trained model. For
example, for an MOI of 3, 1-e-3 = 95% of cells will be infected according to Poisson statistics.
Several identical wells of infected and uninfected cells are imaged at multiple locations to satisfy
the large number of images needed to train an AI model based on deep-learning/convolutional
neural networks34.

Fig. 1 | Model workflow for AVIA in training (A) and conducting an assay (B) using a trained model.
After the cells are incubated, the remainder of the process is entirely automated improving reliability, cost,
and scaling potential. The machine learning workflow includes training an ensemble of machine learning
models to improve accuracy and generalizability.

The workflow for training an AVIA model is as follows – a cell culture is first plated and infected,
just as in a traditional assay. The cells are then left to incubate while a series of brightfield
images are captured with a high-throughput microplate imager 35–38. If the microplate imager
includes an incubator (temperature control, CO2), then this can happen automatically, otherwise
the plate has to be manually transferred to the microplate reader at the selected timepoints.
Then, the images and plate layout are transferred to ViQi Inc. servers, at which point the
processing steps are complete for the user.

Currently, when first operating on a new virus, cell line, or imaging device, a new AI needs to be
trained using the same cells, virus, plates and imaging instrument as will be used routinely for
infectivity assays (Fig. 1A). Once a model is created, the user can conduct various infectivity
assays such as inactivation assays, clearance assays or routine virus titers (Fig. 1B). For a
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routine assay, a 96-well plate can contain 3-4 replicates and 3-4 virus dilutions, allowing 8-12
independent samples per 96-well plate.

Fig. 2 shows the input data for training and validating an AVIA model. A single 96-well plate is
populated with a cell monolayer and infected at a range of MOIs according to the layout in Fig
2A, in which a quarter of the wells are infected at a high MOI and a quarter of the wells are
uninfected (the training protocol), and half of the plate has a dilution series to validate the model
performance on partially infected wells (validation protocol). To further increase the spatial
resolution and maximize the number of training samples, the images are split up into square
subregions, or ‘tiles’. Fig. 2B and 2C show example images from the two training quadrants and
a potential tile separation scheme – here the images would each yield 256 tiles of size
128x128px.

While training, the model is exposed to many examples of images from either class, along with
their labels, and the achieved binary accuracy is monitored for train (seen, blue) and test
(unseen, red) data (Fig. 2D and E). When the test curve falls below the training curve, it
demonstrates that the model is overtraining to the training data (Fig. 2D). The deep neural
networks used in AVIA contain millions of free parameters, and with a finite amount of training
data, some amount of overfitting to the specific examples in training is inevitable. Occasionally
test data shows better performance than training data (Fig. 2E), indicating that the dropout and
regularization training parameters used to suppress overtraining may be too aggressive.

A successfully generalized model would be able to identify tiles as infected or uninfected in
images at a range of MOIs between the two extremes used in training. A sigmoidal trend is
expected with plateaus towards the two extreme MOIs used in training and a linear range along
which an infectivity assay would be sensitive (Fig. 2F). To quantify this, infectivity is defined as
the fraction of tiles with a raw AI score above the threshold of 0.5 in a given image. These
image scores are grouped according to MOI and their means and standard error define the
predicted infectivity for a given MOI. This curve is fit with the four parameter logistic model (4PL)

𝑦
𝑗

=  𝑎 +  𝑑−𝑎

1+
𝑥

𝑗

𝑐( )𝑑 ,

where yj is the infectivity at MOI xj, a is the infectivity of the upper asymptote, d is the infectivity
of the lower asymptote, c is the MOI at the inflection point of the curve, and b is related to the
slope at the inflection point39. The datapoints from the training protocol (e.g. MOI 0.0 and 2.0),
that were reserved for testing the AI, are included in these fits. To avoid using multiple points at
the high and low plateaus in fitting Eq. 4PL, a series of fits were performed by cumulatively
masking points from the high and low MOIs until the minimum valid number of datapoints was
reached. The fits are evaluated by their R2 and the top 3 are reported. This curve also serves as
the calibration for the assay, which allows converting the infectivity output of the AI (Y axis in
Fig. 2F) to a multiplicity of infection (MOI) estimate. The quality of the fit indicates the quality of
the predicted MOI when the AI's infectivity output falls within the linear range of the assay
(green zone in Figure 2F).
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Fig. 2 | Training and validation of AVIA ML models. A, the plate is partitioned into training MOIs (mock
infected and saturated infection) and validation MOIs (serial dilutions). B and C, brightfield images are
split into tiles, which are used as inputs to train, test and validate the model. The performance of the
model on test data relative to train tiles determines the degree of overtraining (D and E). F, a successful
model predicts infectivity with plateaus at low and high MOI and a linear range at intermediate MOIs on
validation data. The error bars show the standard error of the images for a given MOI.

The kinetics of each virus and cell line combination vary. It is not clear a priori when the ideal
time is to train and conduct an assay after infection. As time progresses, the signals from
infection will generally get stronger, until they are so strong that they can be observed by eye.
There is therefore an optimization of choosing a timepoint as early as possible to minimize the
turnaround time of model training and assaying, but still retaining sufficient accuracy that the
results are trustworthy and interpretable. Training the AI on phenotypes associated with
productive infection rather than cell death or necrosis should also help with specificity. We
therefore train models at several timepoints during the infection and compare the results. These
experiments can consist of several binary models that then get compared or one multiclass
model with infected and uninfected classes for the entire timecourse. This time analysis is
typically performed before training and validating at a single timepoint.

Results

Viral versatility
With the model workflow optimized, and the degree of model generalizing power quantified, we
are now in a position to demonstrate the application of AVIA on a set of viruses. For each virus,
a separate model was trained using the MobileNet architecture, 128px tiles, 40% dropout,
1e-4.5 learning rate, but different selected assay timepoint and number of base CNNs that
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compromise the model – single (S), 8 CNNs (E8), or 16 CNNs (E16). These performances could
be improved by gathering more training examples, exploring more of the hyperparameter space,
or incorporating more hyperparameter combinations into an ensemble model architecture if
necessary. The assay timepoint was determined by selecting the minimum timepoint in the
productive phase of the infection (i.e., not the first timepoint) with the highest test accuracy. This
timepoint was used for training binary AIs for each virus (infected vs. uninfected), and validating
their predictions using serial dilutions with the indicated MOIs determined by conventional
means (plaque assay or TCID50).
Fig. 3 shows the results of training and validation for each of the seven viruses. For each
column, the top panel shows the development of the model performance on training and testing
data as the training progresses through its cycles (epochs). The middle panel separates test
performance into infected and uninfected classes to reveal any biases in the model towards
false positives or false negatives. The bottom panel demonstrates model performance on MOIs
from serial dilutions.

After training hundreds of models on different experimental setups and hyperparameter
conditions a few metrics of success have been developed for model training and validation.
These are:

1. A test accuracy plateau (or subsequent downtrend after peak accuracy) within the range
of training epochs.

2. A peak test accuracy above 75%.
3. A peak test accuracy greater than 95% of the peak training accuracy.
4. A ratio of true positive rate to true negative rate (and vice versa) of less than 1.10.
5. A linear range of the assay, as determined by the sigmoid fit, within the bounds defined

by the MOI dilutions in the calibration curve.
6. A linear range spanning more than a 10-fold range (comparable to that used in a

traditional plaque assay with a countable range of 10-100 plaques per well) or
equivalently containing ≥ 3 MOI dilutions.

7. A difference in the predicted MOI plateaus of ≥ 0.5.

Applying these seven metrics to the seven virus models shown, it is observed that all models
satisfy criteria #1 and #2. These models were all trained with the EfficientNet-based CNN
architecture which has smooth monotonic curves on AVIA data tested, as opposed to the
VGG-based architecture that tended to find multiple local minima per 100 epochs for the
selected hyperparameters. HIV would have failed criteria #3, but with the aid of the ensemble
model method, all models pass. Three models narrowly fail criteria #4 achieving a ratio of 1.12
for HIV, MVA and adenovirus.

All but one model (vaccinia) satisfy criteria #5. This criteria is meant to ensure that the upper
and lower bounds of the linear range are not beyond the MOIs in the calibration curve. Vaccinia
appears to not have a well defined upper bound. This is either caused by an overestimate of the
virus titer, or could potentially be addressed by improving the AI accuracy, thereby improving the
false positive rate and shifting the calibration curve to the left. An improvement can be achieved
using an ensemble AI or potentially larger tiles, which is currently under investigation.
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Three models fail criteria #6, and have an assay range < 10-fold. In two cases (HIV and
adenovirus), their linear ranges are still enough to cover three 2-fold dilutions for an 8-fold assay
range. Vaccinia has a reduced range of 6.7. This can be addressed experimentally in the assays
by using 2 or 3-fold dilutions rather than 5 or 10-fold ones. The AI can also be potentially
improved as discussed above. Lastly, two models fail criteria #7. HIV has a linear prediction
range of 0.5, passing narrowly, and the two MVA strains have a range of 0.4. Both MVA strains
were already using a 16-model ensemble, so further improvements to AI accuracy could
potentially come from larger tiles, or using both larger tiles and dilution data for training
regressor AIs (see discussion). A reduced numerical range for valid predictions doesn't appear
to adversely affect the other aspects of assay performance discussed above, however.

Fig. 3 | Model training and validation performance on six viruses. The top row shows the progress of
model accuracy on train (seen by the AI, blue) and test (unseen by the AI, red) data, the middle row
shows the test data accuracy for each of the two classes, the bottom row shows the model predictions on
a range of intermediate MOIs from serial dilutions. The green box defines the assay’s linear range from
the best fit for a sigmoidal function as described in the text. The error bars show the standard error of the
images for a given MOI.

Table 2 shows the versatility of AVIA. It demonstrates that a model could be trained for a
virus/cell line combination within each major virus category of RNA, DNA, enveloped, and
non-enveloped. Each model's performance on dilution validation data achieves a clear
sigmoidal trend correlated with MOI with an R2 > 0.99. These AI models were captured on four
different microplate reader models, at five different laboratories, on seven different cell lines.

Example inactivation assay
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The primary goal of AVIA is to create a viable method of infectivity quantification to increase the
rate of vaccine development and other assays dependent on quantifying live virus titers. In this
section, we demonstrate the applicability of AVIA in the context of an inactivation assay.
Specifically, the model trained on Influenza A virus-infected MDCK cells at 16h after infection
was used to quantify the effect of a biocide on infectivity of this virus.

The virus sample used in this experiment was treated with either media or the biocide product.
The cells were then infected at a range of dilutions of virus, incubated, and imaged at 24h, 30h
and 48h. If the biocide was successful, the dilution curve would be translated left towards lower
MOIs.

Fig. 4 shows the AVIA predicted dilution curves for the treated and untreated populations at the
three timepoints after infection. The same sigmoidal four-parameter model was used to fit
treated and untreated dilutions at each timepoint. One of the four parameters, the inflection
point, marks the location where the slope changes direction. The difference in the inflection
point between the two curves quantifies the magnitude of the effect of the biocide. On a
logarithmic scale, this parameter is called the log-difference or log-inactivation. This value is
displayed in the legend for each timepoint. The log-reduction average and standard deviation
are -1.48 and 0.03, respectively. These findings were consistent with the log-inactivation
measured by conventional means40 (personal communication).

Fig 4 Inactivation assay on influenza A virus-infected cells treated with media or biocide.
Infections were incubated for different times (24h, 30h, 48h; A–C respectively), imaged, and analyzed
with a pre-trained AI (Influenza A at 16 hours post infection). X Axis: known virus dilutions; Y-axis: AI
predictions of infectivity. Pink range represents the difference between IC50s for the fits to the media and
product dilution series. The error bars show the standard error of the images for a given MOI.

It is noteworthy that the inactivation assay successfully quantified the log-inactivation at three
incubation times well after the timepoint used to train the model. This demonstrates that the
infectivity phenotypes present at 16 h were still being expressed in the cell culture at those later
timepoints. The higher dilutions and longer timepoints allowed for multiple rounds of infection to
be observed, expanding the range of log-inactivation observable in a single experiment.

Importantly, the log reduction measurement was stable across the three incubation times, with
the standard deviation of 0.03 being approximately 2% of the mean. This provides further
confidence for the robustness and precision of AVIA, and its applicability in real-world
inactivation assays.
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Discussion
Incubation time occupies the vast majority of the total turnaround time of traditional assays for
determination of infectious units. The timecourse analysis with AVIA revealed that infection
phenotypes could be detected within hours after infection. This represents a dramatic reduction
in the required incubation time for ML-assisted assays over traditional methods, in addition to
the improvements in reproducibility, cost per sample, and throughput.

In HIV/TZMbl and Influenza/MDCK virus-cell line combinations tested, the model was able to
distinguish infected from uninfected cells at the first measurement with relatively good accuracy.
It is estimated that the time between infection and imaging the first time point would be between
15 and 45 minutes. This is likely to be well below the amount of time required for the infection to
take hold and for the cells to show any early signs of virus production. One potential mechanism
for these early stage phenotypes is cell signaling as a result of viral infection 41,42. We have not
investigated the potential biological significance of these rapidly changing early phenotypes, but
this could be of interest for further investigation. Artefactual shifts in phenotypes can be caused
by CO2 and temperature shifts resulting from imaging plates outside on an incubator, and
uneven evaporation during incubation. Differential effects from virus-containing media can be
caused by cytokines or other factors carried over with the media at high-titer infections. These
effects will be addressed in future studies addressing the mechanism of these early phenotypes.

Splitting images into tiles allows for a larger batch of training examples to fit into memory during
each training step. Larger batch sizes expose the machine learning model to a greater variety of
training examples simultaneously and decrease the volatility in each step of the training
progression due to a larger sample size. However, a smaller area per tile means each positive
tile is less likely to contain legitimate signals of infection. A greater number of smaller tiles also
splits signals at tile boundaries and reduces contextual information. It has been argued that
tiling images only serves to hurt performance 43. In this application, we believe there is more of a
balance because a model trained on large tiles may perform better on the saturated infection in
the training set, but we expect that the loss of ability to discriminate individual cells in large tiles
and the reduced sampling will hurt performance in the sub-saturated infections used in real
assays. The reduced number of training samples may also hurt the robustness of the trained
models on unseen replicates. As expected, our preliminary observations are that larger tiles
improve AI accuracy on the infected vs. uninfected cells (not shown). However this area
deserves further investigation to determine the effect of reduced sampling, and of scoring large
tiles that contain both infected and uninfected cells. It is also possible to train regressor models
on intermediate dilutions of virus, so that AIs are exposed during training to the intermediate
infection levels that they will be scoring when performing assays. Using large tiles with
intermediate infections during training may overcome the effects of reduced sampling with larger
tiles.

In most of the experiments described here, we could not detect differences between infected
and uninfected cells by visual inspection, so the AIs appear to base their decisions on properties
that a human observer cannot directly perceive. Some work has gone into trying to visualize
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what trained AIs perceive 44,45, including generative models that produce images to illustrate the
differences they detect 46,47. We have not pursued trying to visualize or describe what our AIs
use to differentiate infected from uninfected cells, primarily because our interest is currently
limited to the utility of this tool in practical assays. We can however compare phenotypic
similarities between cells infected with different viruses and time points (see Supplementary
Materials sec. Timecourse Analysis for examples) and determine if these can be clustered by
phenotype as perceived by an AI. We have used this technique previously to cluster phenotypes
induced by RNA interference 48, age-related phenotypes in C. elegans49 and visual trends in
modern art50.

As more viruses are characterized, we expect there to emerge clusters of similar phenotypes
induced by viral infection in a certain host cell, which may correlate with infectivity pathways and
antiviral defenses used by the different viruses. A map of infectious virus phenotypes may
become useful when infectious viral load monitoring becomes more important in the context of
control of seasonal and epidemic infectious events. This can be an important research tool for
prediction of virulence, or potentially be used in a diagnostic setting such as environmental
monitoring as an early indicator of the presence of infectious viruses.

The technique was validated on influenza A virus, HIV, MVA, poliovirus, vaccinia virus,
adenovirus, and an adenovirus variant, spanning the four major types of viruses. On coronavirus
229E and MVA-infected cells, the trained models were robust across unseen biological
replicates, without significant loss in accuracy. The consistency of this technique was
demonstrated in an inactivation assay when the log-inactivation of an unknown biocide was
measured at three different times after infection, achieving reproducibility within 2%.

We anticipate that this tool could be further developed into a broad and rapid diagnostic assay
from infectivity phenotypes observed for a variety of viruses.

Technique Reproducibility Time Labor Cost Automation/
Scalability

AVIA (ours) excellent hours low low high

Plaque Assay good days high low low

TCID50 medium days high medium -
high

high

FFA: Antibodies
(Ab) or GFP

medium day mediumGFP -
highAb

mediumGFP

- highAb
lowAb -
mediumGFP

Tab. 1 | A summary of three traditional techniques of conducting a viral infectivity assay as well as
the proposed AVIA technique. By eliminating many of the human intensive steps of the traditional
techniques, AVIA enables greater reproducibility, scalability, and lower costs.

Virus Virus type Assay Max AI Single model Linear assay Predicted Sigmoid
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timepoint accuracy or Ensemble range (MOI) MOI range R2

Coronavirus
229E

RNA/enveloped 4h 80% S N/A N/A N/A

HIV RNA/enveloped 24h 74% E8 0.2 - 1.6 0.4 - 0.9 0.996

Influenza A
virus

RNA/enveloped 10h 89% S 0.03 - 0.5 0.2 - 0.9 0.973

MVA-CR DNA/enveloped 4h 81% E16 0.1 - 0.9 0.3 - 0.7 0.990

MVA-WT DNA/enveloped 4h & 6h 73% E16 0.2 - 1.6 0.4 - 0.8 1.000

Vaccinia DNA/enveloped 24h 78% S 0.3 - 2.0 0.3 - 0.9 0.995

Polio RNA/
non-enveloped

21h 97% S 0.02 - 0.2 0.2 - 1.0 1.000

Adenovirus DNA/
non-enveloped

24h 87% S 0.01 - 0.3 0.3 - 0.8 0.996

Tab. 2 | Model performances for viruses in AVIA assays. Max AI accuracy is the test accuracy at the
peak of the training curve. The linear assay range (MOI) is the difference in predicted MOI between where
the linear range meets the upper lower asymptotes. Corona 229E has no corresponding validation data.
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Methods

Viral cultures
Datasets were prepared for 7 different virus/cell lines pairs from 6 different laboratories
according to the training protocol described in Fig. 2 (mock-infected, synchronous high-MOI

12



infection, and infections with 2-fold dilutions of virus). Except as noted in the text, infections and
imaging were conducted on 96-well plates with flat plastic bottoms. Because the incubation time
is low, the seeding density of the cells was relatively high (typically > 85% confluence), except
as noted in the text. The dilution MOIs were predetermined in the different laboratories using
TCID50 or plaque assay and assumed to be accurate to within a factor of 2.

The cultures for Corona 229E-infected Huh7 cells and Influenza A-infected MDCK cells were
prepared as described in  et al.51, and Crisci et al.52, respectively. The 229E images used in
Supplementary Fig. 1 were captured at 20x and 40x using a manual microscope. Other 229E
and influenza/MDCK images (see Supplementary Fig. 9) were captured on a Cytation 137 at 20x
magnification. Modified vaccinia ankara (MVA) wildtype (WT) and CR-infected CR.pIX cells53

were prepared as described in Jordan et al.54, and the images were captured with a Synentec
NyONE36 at 20x. Human immunodeficiency virus (HIV)-infected TZMbl cells were prepared as
described by Wang et al.55 and the images captured with a Cytation 538 at 20x.
Adenovirus-infected HeLa cells were prepared as described in Jogler et al.56, vaccinia-infected
BHK-21 cells were prepared as described in Earl et al.57, polio-infected HeLa cells were
prepared as described in et al.58. Influenza-infected MDCK cells (see Supplementary Fig. 9)
were prepared as described by Kim et al.59 and the images were captured with a Synentec
CellaVista35 at 20x.

Imaging
Each well on the 96-well plates was imaged 13-25 times using a grid of non-overlapping
images. Images were collected every 2-4 hours before the onset of visible CPEs. Imaging was
done with a high-throughput microplate imager or manual microscope (ZEISS Axio
Imager/AxioCam HRc) as noted above. The sensor sizes were as noted in Table [2; virus table].
The focal plane of the images was set to the interior of the cells as opposed to the tops of the
cells as is commonly done for brightfield to optimize cell segmentation tasks. The images were
stored as 16-bit grayscale TIFF-files or 48-bit RGB (16-bit per channel), in which case they were
converted to grayscale using the NTSC formula60.

AI training
The classification model is a convolutional neural network (CNN), which uses a series of
convolution kernels to extract features from input images at increasing levels of abstraction 61.
This model was implemented using Tensorflow62. The weights of these kernels are initialized to
those pretrained on ImageNet63. Bootstrapping on the knowledge acquired from those models
allowed the AVIA models to converge faster and at a higher accuracy 64. After each cycle
through the full training data (an epoch) the data is transformed with flips and rotations to
increase the scope of the training examples.

Depending on the strength of the morphological signals from the infection, and the allowed time
budget for training, models of varying complexity are trained. A single CNN based on
EfficientNetB065 can be used as a rapid model with modest accuracy as a stand-alone model for
training. On the other end of the scale, a total of sixteen CNNs can be trained with different base
models and learning parameters (hyperparameters), and their predictions fed into an ensemble
classifier such as a support vector machine (SVM) or random forest classifier 66,67. In our
experiments, three other CNN architectures were used including MobileNet68,
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InceptionResNetV269, and VGG70; and hyperparameters with two options for dropout71; and two
options for learning rate. Future work will also include tiles with multiple sizes.

In initial experiments, cells were seeded at a lower confluence more typical of conventional
infectivity assays that have long incubation times to allow for cell growth. Because of the short
incubation time for AVIA, in subsequent experiments, cells were seeded at higher density or >
85% confluence to maximize the number of cells and thus the amount of information available to
the AI when the cells are imaged. In the earlier, more sparsely seeded datasets, we trained a
prefilter network to eliminate tiles that did not have sufficient cellular material. The image data
for this network was the same as for the infectivity network, except tiles were manually labeled
that had little to no cellular material so that they would be eliminated by the prefilter. This
prefilter network was easily trained to approximately 92% accuracy on each occasion (not
shown).

Ensemble AI
In ensemble models, numerical outputs of multiple CNN models (marginal probabilities of a
given tile being infected) are fed as input features into an automated feature classifier trainer
developed by ViQi. This trainer uses scikit-learn72 to try several different feature normalization,
scoring and selection techniques coupled to several different high-performing classifiers. The
trainer optimizes appropriate parameters for the algorithms at each stage and automatically
selects the best-performing model73 and corresponding parameter set.
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Supplementary Material

Training optimization
There are many free parameters in designing the experimental setup and the model
hyperparameters that must be investigated and tuned in order to give an AI model the best
chance of finding features to discriminate infected from uninfected cells effectively. In this
section, we discuss several investigations and their effect on the parameter choices. These
experiments were performed on several datasets with different virus/cell line pairs. This way, the
findings are not bound to just one combination of cell line and virus. In some cases, the
experiments are presented on multiple datasets to provide further confidence in the findings or
to illustrate differences between datasets. In other cases, it was only possible to perform the
experiment on one dataset.

Effects of magnification
With modern cameras (1k X 1k pixels or greater) and optics, 40x objective lenses typically
produce images at the resolution limit expected for light microscopy without substantial
oversampling, or ∼ 0.25μm/pixel with 2k x 2k cameras1. However, 20x objectives, especially with
2k or 4k cameras, provide resolution near the resolution limit for visible light with several
practical benefits over 40x. Common plastic-bottomed tissue-culture plates are routinely used
with 20x objectives rather than more expensive glass-bottom or other specialized plates. The
focal plane is typically thicker with 20x objectives, allowing us to image more of the intracellular
volume. Lastly, with 20x objectives, the amount of cellular material per image is increased by a
factor of 4 relative to 40x, or the number of images per assay could be reduced by a factor of 4,
which would be a substantial savings in imaging, upload and processing time.

For example, training data for Coronavirus 229E-infected Huh7 cells was plated for two
replicates – one was captured at 20x magnification and one was captured at 40x magnification.
The same microscope and camera sensor was used to capture the same number of images for
both sets. The 20x dataset therefore contained more cell examples for the model to learn from,
but less detail per cell. Both of these two datasets were resampled to create a total of four
datasets – the 40x raw data was downsampled by a factor of two to match the resolution of the
20x raw data, and the 20x raw data was upsampled to match the resolution of the 40x data. The
downsampled 40x dataset contained the least amount of tiles of the four datasets (4x less than
the raw datasets) and the 20x upsampled dataset contained the most amount of tiles (4x more
than the raw datasets). To control for the variable number of tiles, one experiment was run with
the number of tiles in each dataset limited to the number in the smallest set (40x downsampled;
Supplementary Fig. 1A), and a second experiment was run with the uneven number of tiles
(Supplementary Fig. 1B). A fresh model was trained for each of the eight datasets and the
accuracy was evaluated on test images not previously seen by the trained models.

When the number of tiles is held constant, if the amount of cellular content is the primary driving
factor, as opposed to high-resolution cellular features, the model should perform approximately
equally well on 40x raw and 20x upsampled, and similarly on 20x raw and 40x downsampled.
Instead, we see that the 20x dataset performs best at each resolution, indicating that the
reduced depth of field in the 40x data, and therefore the consistency in the focus across the
image, places a significant limitation on the model performance. This discrepancy between 20x
and 40x magnification becomes even more pronounced as the increase in the number of tiles
for 20x over 40x is allowed to skew model performance. These results, in addition to the
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practical benefits for image acquisition, provide a strong indication that 20x magnification is
more of an optimal condition for AVIA experimental setups. Of course, the relevant
morphological features will be different for different viruses, and high-resolution features may
still become a deciding factor in some viral infections.

Fig. 1 | Exploring the effects of magnification on training accuracy. Raw image data at 20x and 40x
are from two different replicates and magnifications of Coronavirus 229E infection of Huh7 cells. Blue
bars are at the spatial sampling of the raw 40x data, and gray bars are at the spatial sampling of the raw
20x data. A: the number of tiles was held constant at the minimum of the four experiments (40x
downsampled). B: the maximum number of tiles available were used for each dataset.

Timecourse analysis
Training a multi-class model with a positive class and negative class for each timepoint reveals
the phenotypic similarity between all classes simultaneously (see Supplementary Fig. 2A). Each
row represents a different known class (e.g. row 1 is uninfected cells at 0 hours post-infection).
The raw AI output for a given image tile is the set of marginal probabilities for all classes defined
in the classification run, and the selected class prediction is the one with the highest value.
Thus, the column values in each row are the distribution of class predictions for a given row’s
true class. The correct predictions are on the upper-left to lower-right diagonal in this view, and
the remaining values indicate classes confused by the AI with the correct class. For example, a
comparison can be made between the negative classes at all timepoints (top left quadrant). This
reveals the kinetics of cell growth in the absence of infection. Or we can compare the confusion
between the positive classes at all timepoints (bottom right quadrant), which reveals the kinetics
of the infection convoluted with any residual cell growth. We can also compare positive and
negative classes at a single timepoint to estimate what a binary model using only that single
timepoint would achieve. The set of four points in a binary model would mimic the standard
binary confusion matrix, with the caveat that the multi-timepoint model is also trained on the
other timepoints while a binary model would be trained on a single timepoint (or possibly two
adjacent ones).
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As time progresses in the uninfected cells (going down the top left quadrant of Supplementary
Fig. 2A), the distribution around the true positive diagonal broadens, indicating that there is a
larger amount of confusion between timepoints, and the cells are becoming less distinct with
time. A similar trend occurs in the infected population. These trends are relatively smooth,
indicating gradual, monotonic progressions of the cell morphology with time.

There is a relatively strong true positive and true negative signal at 0h after infection as
indicated by the relatively large signal (0h+, 0h+), counter to the intuition that the cells will have
had insufficient time to display signs of infection this early after infection. This indicates that a
different mechanism is at play for this timepoint, which might not correlate well with infectivity
and requires further investigation. We discuss possible explanations for this in the discussion.

The 24h timepoint has the highest accuracy among those on the true positive diagonal that can
be considered an infectivity signal. Therefore, for HIV, 24h appears to be the optimal time to
train a binary model at and use for assays. In this case combining data from adjacent timepoints
should help training accuracy as the neighboring cell phenotypes appear similar.

The changes associated with uninfected cells can be removed from the infected cell timecourse
leaving only the kinetics associated with infection. A way of doing this, that assumes the
phenotypic changes in the infected culture are superimposed on the phenotypic changes in the
uninfected culture, is to perform a vector subtraction of the uninfected probability distribution
from the infected one at each timepoint. Euclidean distance between infected probabilities at
each timepoint can then be used to calculate phenotypic distances to visualize with
dendrograms.

Supplementary Fig. 2B shows the dendrogram for the HIV infection through time. The
phenotypic distance between any two classes in the dendrogram is reflected by the total
distance along the branches that connect them. Up to the third timepoint, the progression is fast
based on the large branch length between 0h–3h, and 3h–6h. Between 6 h and 18 h the
infection undergoes a relatively slow transition and the progression accelerates at the later
timepoints. The classes getting progressively further from 0h validates that the infection is
monotonically progressing with time. It is important to point out that the order of the classes was
never presented to the AI in training, so its ability to reconstruct the order of the timepoints
indicates that it is based on progressive phenotypic changes in the cells.

Human Immunodeficiency Virus
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Fig. 2 | Simultaneous time and infection multiclass models for HIV displayed in confusion matrix
and dendrogram formats. In A the class number represents the number of hours after infection and
symbol represents the infection condition: infected (+) and uninfected (-) cells. Rows denote the
distribution of the model predictions for each class. The correct calls for each class are on a top-left to
bottom-right diagonal, and any signal outside of the diagonal represents confusion between the known
class in the row and the predicted class in each column. B, the phenotypic progression of the infection
after removing uninfected cell classes. For a description of how these are interpreted as phenotype
similarities between classes, see text.

The timecourse for influenza A-infected MDCK cells is shown in Supplementary Fig. 3. There is
a large amount of confusion shown among the uninfected cells with a phenotype transition
happening between 4h and 6h. The infected population shows little confusion at time: 2h, 4h
and 10h after infection, and a significant amount of confusion at 6h and 8h.

Supplementary Fig. 3C compares multiclass timecourses for influenza A-infected MDCK cells
analyzed using two types of machine learning techniques: CNNs as done throughout this study,
and a feature-based classifier. In this case, a 10x objective was used for imaging, and the same
images with similar tile sizes were analyzed by the two different machine-learning techniques.
The predictions from the feature classifier used predetermined image analysis features (CHARM
features2) such as textures and polynomial decompositions, and the same auto-ML software
described in Methods. The predictions from the CNN model (the algorithm core of AVIA) used
features that it fabricated for the specific training set. Interestingly, the same phenotypic patterns
across time can be seen in the feature classifier confusion matrix albeit with a lower signal to
noise ratio. The fact that a measurement as orthogonal as a feature classifier based machine
learning algorithm versus a CNN algorithm displays similar patterns in the confusion matrix
illustrates that these patterns can not be an artifact of the machine learning algorithm itself.

Influenza A virus
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Fig. 3 | Comparison of two types of machine learning methods on time and infection multiclass
models for influenza A. Format for the confusion matrices and dendrograms are the same as
Supplementary Fig. 2. A and B, the predicted dynamics according to the CNN-based model used in AVIA.
C and D, the predicted dynamics according to a feature classifier-based model.

Robustness to experimental conditions
The central challenge in machine learning engineering is developing a robust algorithm that
generalizes to new input data from a limited amount of training data and resources. In this
section, we evaluate the generalizability of models across experiments. The current AVIA
workflow requires new training data and algorithms for each new virus, cell line, and laboratory,
which corresponds to its practical application. Assessing the performance of a model trained
across those domains may be of interest for diagnostic purposes, or potentially to attempt to
discover phenotypic classes of infection common to multiple viruses.

Replicate robustness
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Fig. 4 | Comparing extrapolation of models trained on two biological replicates to a third replicate.
Panels A–C display the results for replicate pairs (R1,R2), (R1,R3), and (R2,R3), respectively. The blue
bars represent the replicates that the model was trained on and the red bars represent test data from a
replicate not used in training.

Collecting results from several biological replicates accounts for variability in cell cultures.
Collecting 3 biological replicates allows for a model to be trained on data from 2 replicates, so
that the model is not overtrained on any one replicate. The third replicate can then be used to
check the model's generality. This experiment was conducted on replicates of Coronavirus
229E-infected Huh7 cells. This dataset had low seeding density (~50%) so the prefilter network
(see Methods) was applied to all images. Supplementary Fig. 4 shows the performance of these
3 models on unseen images from the two replicates used for training (blue) and images from the
remaining replicate (red). Test images from each replicate were withheld from the models during
training and were used for the assessments. If any of the models suffered from severe
overtraining, the accuracy on the unseen replicate would be much lower than the two replicates
used in training. In each case, the performance on the unseen replicate is comparable to that of
the training replicate. For example, in panel C the test replicate accuracy is still well above the
equal probability binary classifier noise floor of 50%, and in panel B the test replicate accuracy
actually exceeds one of the train replicates. This was an important demonstration that the AIs
are not overly sensitive to specific cell growth conditions or infections.

Temporal robustness
Supplementary Fig. 2 showed that multitime classifiers have some confusion among nearby
timepoints. This section frames the question in the context of a series of binary classifiers, which
allows for a direct test, free of contamination by the other timepoints, and more closely mimics
the training of AIs for subsequent titration assays. For example, Supplementary Fig. 5 shows
the performance of 4 models trained on HIV-infected TZMbl cells at times 0, 9, 15, and 24 h
after infection, and 4 models trained on Coronavirus 229E-infected Huh7 cells at 1, 4, 8, and 12
h after infection – well before CPEs are visible3. For the HIV experiment, the test images were
from wells randomly distributed across either class, and for the 229E experiment, testing was
done on a biological replicate left out of training. The same train/test partition was used for each
timepoint.

The cells at each timepoint will be at a different stage in their progression, so it is expected that
the model accuracy would be substantially lower at the other timepoints. This form of
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overtraining explains the height difference between the blue and red curves. However, the
heights of the red curves are well above the binary classifier noise floor of 50%, indicating a
modest degree of robustness across these time differences.

With the models trained on HIV (Supplementary Fig. 5 A–D), the model constructed with 0h
(panel A) training data has the highest accuracy on test data from the same timepoint (blue)
among the four models, as well as the largest difference between that value and the mean of
the data from the other timepoints (red). This provides further evidence of an early phenotype
that degrades at later timepoints (as first noted in Supplementary Fig. 2).

Fig. 5 | Comparing extrapolation of models trained at one time after infection to other timepoints.
Panels A–D display the results for models trained on HIV infections at 0, 9, 15, and 24 h post-infection,
respectively. Panels E–F display results of models trained on Coronavirus 229E infections at 1, 4, 8, and
12 h post-infection. The blue bars represent performance on test images from the timepoint that the
model was trained on and the red bars represent test data from the other timepoints.

In Supplementary Fig. 5 panels E–H, models trained 1h post-infection (panel E) perform
adequately on the 1h timepoint, but perform slightly worse on subsequent timepoints. Models
trained at 4, 8, and 12 h post-infection (panels F–H) all perform well on images from 4, 8, and
12 h post-infection, but comparatively worse on images from 1 h post-infection. Similar to the
HIV 4 model experiment, there appears to be an early short-lived phenotype, but over the later 3
timepoints, the second phenotype is more persistent.

Strain robustness
Different viral strains can yield radically different characteristics of infection in cells. Without
imaging in fluorescence, we can ask if an AI trained on one variant can accurately distinguish
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cells infected with the other variant. This is important for validating that AIs trained on one
dataset are not bound to the same set and can extrapolate to different infections, potentially with
different related viruses on the same cell line. In this experiment, CR.pIX cells were infected with
two variants of MVA, wildtype (WT) and strain CR, that express different fluorescent proteins.
Ensemble models consisting of 16 base CNN models were trained on the CR (Supplementary
Fig. 6A) or WT variant (Supplementary Fig. 6B) of MVA, and were used to evaluate images from
the other variant. The 3 sets of images used to evaluate models were those used internally
during training (blue), images from the same variant withheld from training, and images from the
other variant (red). The performance on the previously unseen strains is substantially greater
than random indicating that the AI can successfully generalize to the unseen strain. Although
the accuracy of the predictor dropped significantly when evaluating the other strain, it remained
substantially above noise. This is a good indication that models may be able to distinguish these
virus infections, but also report a measurable phenotypic similarity.

Fig. 6 | Comparing extrapolation of a model trained on the CR strain of MVA to another strain.
Panel A displays the performances of the model trained on the CR strain of MVA and panel B displays
the performances of the model trained on the WT strain. The blue bars represent the data that the model
was trained on and the red bars represent test data.

This experiment can be extended by applying these two models to validation protocol data from
both CR and WT strains (Supplementary Fig. 7). Despite the drop in performance across
strains, the correct sigmoidal trend with MOI is achieved and the linear range is consistently
within the range of measured dilution MOIs. The linear range is narrower by more than 40% for
the unseen strain in both instances, encompassing fewer of the dilution MOIs, which is in line
with the lower performance. The performance of the CR model predicting WT (Supplementary
Fig. 7B) fits well with the expectation that the CR strain escapes the cells more easily, often
causing much weaker CPE than WT. In Supplementary Fig. 7C, an AI trained on the weak
CPEs of CR can predict the stronger WT CPEs (bottom row), but an AI trained on the stronger
WT CPEs is not able to score the weaker CR CPEs (top row). A model could potentially be
trained with both variants to desensitize it to the differences between them and create a
calibration curve with a higher signal-to-noise ratio.
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Fig. 7 | Comparison of the dilution calibration curves for models trained on two different MVA
strains. A, the result of training and validating on the WT strain. B, the result of training on the WT strain
but predicting on the CR strain. C, the result of training on the CR strain but validating on the WT strain.
D, the result of training and validating on the CR strain. The fit with the highest R2 as well as the ranges of
datapoints used in that fit is shown in the legend. The error bars show the standard error of the images for
a given MOI.

Laboratory strain and temporal robustness
The larger the number of differences between two datasets, the less likelihood there is for a
model exposed to only one of those datasets to achieve generality in discerning infectivity
features in the other dataset. For example, in Supplementary Fig. 8 we compare the similarity of
two different datasets of the same virus from different laboratories. The dataset from laboratory
A contains influenza A virus-infected MDCK cells, at 10h after infection, on a BioTek Cytation 1.
This instrument used a 10x objective and a 1k camera for a resolution of 0.67 μm/pixel. The
dataset from laboratory B contains the same virus strain and cell line, but at 16h after infection
and on a Synentec CellaVista. This instrument used a 20x objective and a 2k camera to obtain
images at 0.65 μm/pixel. Despite the different magnifications and cameras, the images were not
further adjusted due to the close match in resolution. In this experiment, the accuracy achieved
on the unseen data is significantly less than the test data from the same laboratory. The
accuracy of the laboratory A model on the laboratory B data is marginally better than the noise
floor indicating that perhaps there may be some common signals shared between the datasets,
but the noise associated with the different samples and their conditions is overwhelming the
signals. It appears as though in order to generalize to samples from unseen laboratories, data
from several will have to be combined to desensitize the model to these differences. This is left
for future work.
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Fig. 8 | Comparing extrapolation of a model trained on Influenza A virus to a different laboratory,
device and time after infection. Panel A displays the performances of the model trained on laboratory A
influenza experiment and panel B displays the performances of the model trained on the laboratory B
influenza experiment. For more detailed description, see text. The blue bars represent the data that the
model was trained on and the red bars represent test data.

Comparison to GFP
A direct comparison between AVIA and FFA was conducted using CR.pIX cells infected with
modified vaccinia ankara expressing green fluorescent protein (MVA-CR). Several models were
trained on the MVA-CR images using a range of hyperparameter settings. It was found that, for
this dataset, an EfficientNet-based model with 40% dropout had the highest performance on
training data – we therefore use that model for the investigations in this section. It was observed
that the AIs can detect differences between infected and uninfected cultures at 4 hours.

In this section, we define a criteria for tiles containing GFP to compare them to tiles predicted as
infected by AIs. A multi-resolution filter was used on the GFP channel to eliminate
low-frequency noise. Then a global threshold was used to identify pixels with GFP signal. Tiles
containing any GFP pixels were counted as infected. GFP infectivity for an image was the sum
of GFP-positive tiles divided by the total number of tiles, same as for AVIA infectivity. The means
and standard error for AVIA and GFP infectivities for images at each MOI were used in
Supplementary Fig. 9. The colors refer to three sources of data. The purple datapoints were
taken from a plate containing only mock and synchronous MOIs used for training, and the
remaining colors refer to different rows from a plate containing dilution MOIs for validation. The
orange datapoints were from rows at the edge of the plate, which may suffer from plate edge
effects. This set of dilutions was also missing images from the 0.8 MOI dilution. This set of
dilutions is displayed, but was not used in the fit. The correlation (Pearson r = 0.87) shows that
infectivity tracked by AVIA in brightfield images is well correlated with infectivity tracked by GFP
in the corresponding fluorescence images. It also illustrates the potential consequences of plate
edge effects, as well as the excellent reproducibility between replicates when plate edge effects
are factored out.
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Fig. 9 | A comparison of the average infectivity predicted by GFP to the predicted AVIA infectivity
for each dilution on MVA-CR-infected cells. The error bar displays the standard error of the distribution
of predictions for MOI under investigation. The legend displays the correlation coefficient between the two
methods using only the red, green and purple replicates.

Fig. 10 | Cell infection validation on MVA-CR. The left 2x2 matrix contains brightfield images at the
highest virus dilution and the right 2x2 matrix contains brightfield images at the lowest virus dilution. In
each image the GFP channel is overlaid on top of the brightfield channel, along with the color-coded AVIA
tile predictions with false positives (FP) in red, true positives (TP) in green, and false negatives (FN) in
orange. True negative tiles are not displayed.

Supplementary Fig. 10 shows correlation between GFP-infected and AVIA-predicted tiles. The
uneven illumination within and between brightfield images does not appear to affect AVIA
predictions. The 0.025 MOI images show a relatively high false positive rate at low MOIs,
including several false positives at locations that don’t contain any cells. This indicates that the
false positive rate could be helped by training a more thorough background prefilter network.
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Interestingly, while we have shown that AVIA infectivity scales with GFP infectivity when
performing a mean of each well, on an image to image basis, we found the locations of AVIA
and GFP do not always align. This indicates that AVIA may be using a different signal in
different parts of the cells to those that fluoresce in GFP. This effect deserves further
investigation in future work.

Example Training Report
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Fig. 17 | An example training report on adenovirus-infected HeLa cells. True laboratory identity
redacted
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